

KEY TECHNOLOGICAL CHALLENGES

- Oxy-combustion produces higher flame temperatures compared to air-combustion High pressure and relatively low temperature environments may result in a negative
- pressure dependence of the mass burning rate
- Current studies limited to atmospheric conditions

PROJECT OBJECTIVES

Objective 1: Systems Configuration Analysis of a 1 MW_{th} Pressurized Oxy-Coal Swirl Combustor [Project Year:1]

- Task 1.1: Systems analysis
- Task 1.2. Systems engineering design and evaluations
- Task 1.3: TRL and technology gap analysis

Objective 2: Design Analysis and Modeling of the Proposed Pressurized Oxy-Fuel Combustor [**Project** Years:1-2]

- Task 2.1: Definition of system level technical specifications and operating conditions
- Task 2.2: Preliminary configurational design and feasibility analysis
- Task 2.3: Detailed component development and design analysis
- Task 2.4: Preliminary component procurement plan and design documentation
- Task 2.5: Fabrications of combustor components, testing and assembly and integrations of subsystems

Objective 3: Test of the Combustor Performance and Operability [Project Years:2-3]

- Task 3.1: Combustor shake-down experimentations
- Task 3.2: Systematically characterize flame stability and pollutant emission characteristics
- Task 3.3: System analysis with realistic combustor output conditions incorporating experimentally determined combustor characteristics

OBJECTIVE 1: SYSTEMS CONFIGURATION ANALYSIS OF A 1 MW_{TH} PRESSURIZED OXY-COAL SWIRL COMBUSTOR

Table 1: Cycle analysis parameters [3-4]

	O ₂ (vol %)	CO ₂ (vol %)	CO ₂ Flowrate (kg/s)	Flame Ter (°(
Case 1	28%	72%	169	14
Case 2	35%	65%	123	14
Case 3	42%	58%	91	16
Table 2: Coal C	composition [3-4]			
Moisture (wt%)(dry)		1.08	Ultimate (wt%)(dry)	
Proximate (wt%)(dry)			Carbon	7
Ash		8.86	Hydrogen	
Volatile matter		35.78	Nitrogen	
Fixed Carbon		55.56	Sulfur	

32.51

Heating Value (MJ/kg)

REFERENCES: [1] Chen, Lei, Sze Zheng Yong, and Ahmed F. Ghoniem. "Oxy-fuel combustion of a High Pressure Oxy-Coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, J. (2012). [3] Characterization of flue gas in oxy-coal Process. The 7th International Symposium on Coal Combustion (ISCC), 3. Hu, Y., & Yan, combustion processes for CO 2 capture. Applied Energy, 90(1), 113-121. [4] Ghosal, S., & Self, S. A. (1995). Particle size-density relation and cenosphere content of coal fly ash. Fuel, 74(4), 522-529. [5] Croiset, E., Thambimuthu, K., & Palmer, A. (2000). Coal combustion in O2/CO2 mixtures compared with air. The Canadian Journal of Chemical Engineering, 78(2), 402-407. [6] Lux, J., & Haidn, O. (2009). Effect of recess in high-pressure liquid oxygen/methane coaxial injection and combustion. Journal of Propulsion and Power, 25(1), 24.